Энергетическая проблема человечества и пути ее решения. Доклад на тему«Энергетическая проблема мира и пути её решения Почему энергетическая проблема является глобальной

Глобальная энергетическая проблема - это проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса - увеличением автомобильного парка и ростом объема производства полимерных материалов.

Одна из причин возникновения энергетической проблемы - рост народонаселения.

Рост народонаселения является одним из основных факторов увеличения энергопотребления в мире. И именно XX век ознаменовался мощным демографическим взрывом. Если за 1650 лет с начала новой эры население планеты увеличилось всего на 250 млн человек, то менее чем за 60 лет XX в. его рост составил 3 млрд человек.

Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15,2 млрд т условного топлива.

На этой основе получает импульс интенсивный путь решения энергетической проблемы, заключающийся прежде всего в увеличении производства продукции на единицу энергозатрат. Энергетический кризис 70-х гг. ускорил развитие и внедрение энергосберегающих технологий, придает импульс структурной перестройке экономики. Эти меры, наиболее последовательно проводимые развитыми странами, позволили в значительной степени смягчить последствия энергетического кризиса.

46. Понятие «биоразнообразия», причины сокращения численности и исчезновение видов. Значение биоразнообразия для устойчивости биосферы.

Биоразнообразие - разнообразие жизни во всех её проявлениях. Также под биоразнообразием понимают разнообразие на трёх уровнях организации: генетическое разнообразие (разнообразие генов и их вариантов - аллелей), видовое разнообразие (разнообразие видов в экосистемах) и, наконец, экосистемное разнообразие, то есть разнообразие самих экосистем.

Причины сокращения

Исчезновение биологических видов является нормальным процессом развития жизни на Земле. В процессе эволюции неоднократно происходило массовое вымирание видов. Примером может служить пермское вымирание, приведшее к исчезновению всех трилобитов.

Начиная с XVII века, основным фактором ускорения вымирания стала хозяйственная деятельность человека. В общем плане причинами снижения разнообразия служат растущее потребление ресурсов, пренебрежительное отношение к видам и экосистемам, недостаточно продуманная государственная политика в области эксплуатации природных ресурсов, непонимание значимости биологического разнообразия и рост численности населения Земли

Причинами исчезновения отдельных видов обычно являются нарушение местообитания и чрезмерная добыча. В связи с разрушением экосистем уже погибли многие десятки видов. Только около обитателей тропических лесов исчезло порядка 100 видов. От чрезмерной добычи страдают промысловые животные, особенно те, которые высоко ценятся на международном рынке. Под угрозой находятся редкие виды, обладающие коллекционной ценностью.

К числу других причин относятся: влияние со стороны интродуцированных видов, ухудшение кормовой базы, целенаправленное уничтожение с целью защиты сельского хозяйства и промысловых объектов. Считается, что 12 видов живых существ были уничтожены случайно.

Введение. Энергия - проблемы роста потребления

Энергетический кризис - явление, возникающее, когда спрос на энергоносители значительно выше их предложения. Его причины могут находиться в области логистики, политики или физического дефицита.

Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продол-жительности и улучшения условий его жизни.
История цивилизации - история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.
Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV веку средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, - оно возросло в 30 раз и достигло в 1998 г. 13.7 Гигатонн условного топлива в год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек.
В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.
В то же время энергетика - один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).
Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности. Так продолжалось до середины 70-х годов, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.
Считается, что одной из главных причин этого изменения является энергетика. Под энергетикой при этом понимается любая область человеческой деятельности, связанная с производством и потреблением энергии. Значительная часть энергетики обеспечивается потреблением энергии, освобождающейся при сжигании органического ископаемого топлива (нефти, угля и газа), что, в свою очередь, приводит к выбросу в атмосферу огромного количества загрязняющих веществ.
Такой упрощенный подход уже наносит реальный вред мировой экономике и может нанести смертельный удар по экономике тех стран, которые еще не достигли необходимого для завершения индустриальной стадии развития уровня потребления энергии, в том числе России. В действительности все обстоит гораздо сложнее. Помимо парникового эффекта, ответственность за который, частично лежит на энергетике, на климат планеты оказывает влияние ряд естественных причин, к числу важнейших из которых относятся солнечная активность, вулканическая деятельность, параметры орбиты Земли, автоколебания в системе атмосфера-океан. Корректный анализ проблемы возможен лишь с учетом всех факторов, при этом, разумеется, необходимо внести ясность в вопрос, как будет вести себя мировое энергопотребление в ближайшем будущем, действительно ли человечеству следует установить жесткие самоограничения в потреблении энергии с тем, чтобы избежать катастрофы глобального потепления.

Современные тенденции развития энергетики

Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие .
Коммерческие источники
энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных, гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).
К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).
Мировая энергетика в целом на протяжении всей индустриальной фазы развития общества основана преимущественно на коммерческих энергоресурсах (около 90% общего потребления энергии). Хотя следует отметить, что существует целая группа стран (экваториальная зона Африки, Юго-Восточная Азия), многочисленное население которых поддерживает свое существование почти исключительно за счет некоммерческих источников энергии.
Различного рода прогнозы потребления энергии, базирующиеся на данных за последние 50-60 лет предполагают, что примерно до 2025 г. ожидается сохранение современного умеренного темпа роста мирового потребления энергии - около 1.5% в год и проявившая себя в последние 20 лет стабилизация мирового душевого потребления на уровне 2.3-2.4 т усл.топл./(чел.-год). После 2030 г. по прогнозу начнется медленное снижение среднемирового уровня душевого потребления энергии к 2100 г. При этом общее потребление энергии обнаруживает явную тенденцию к стабилизации после 2050 г. и даже слабого уменьшения к концу века.
Одним из важнейших факторов, учитывавшихся при разработке прогноза, является обеспеченность ресурсами мировой энергетики, базирующейся на сжигании ископаемого органического топлива.
В рамках рассматриваемого прогноза, безусловно, относящегося к категории умеренных по абсолютным цифрам потребления энергии, исчерпание разведанных извлекаемых запасов нефти и газа наступит не ранее 2050 г., а с учетом дополнительных извлекаемых ресурсов - после 2100 г. Если принять во внимание, что разведанные извлекаемые запасы угля значительно превосходят запасы нефти и газа, вместе взятые, то можно утверждать, что развитие мировой энергетики по данному сценарию обеспечено в ресурсном отношении более чем на столетие.
Вместе с тем, результаты прогнозов дают значительный разброс, что хорошо видно из подборки некоторых опубликованных данных прогнозов на 2000 г.

Таблица 5.7. Некоторые недавние прогнозы энергопотребления на 2000 г.
(в скобках - год публикации) и его действительное значение.

Прогностический центр Потребление первичной энергии,
Гт усл.топл./год
Институт атомной энергии (1987) 21.2
Международный институт прикладного системного анализа (IIASA) (1981) 20.0
Международное агентство по атомной энергии (МАГАТЭ) (1981) 18.7
Окриджская национальная лаборатория (ORNL) (1985) 18.3
Международная комиссия по изменению климата (IPCC) (1992) 15.9
Лаборатория глобальных проблем энергетики ИБРАЭ РАН-МЭИ (1990) 14.5
Действительное энергопотребление 14.3

Уменьшение энергопотребления по отношению к прогнозируемому связаны, прежде всего, с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии.
Поводом для этих изменений стали энергетические кризисы 1973 и 1979 годов, стабилизация запасов ископаемых топлив и удорожание их добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире.

Вместе с тем, говоря о потреблении энергии, следует отметить, что в постиндустриальном обществе должна быть решена еще одна основополагающая задача - стабилизация численности населения.
Современное общество, не решившее эту проблему или, по крайней мере, не предпринимающее усилий для ее решения, не может считаться ни развитым, ни цивилизованным, поскольку совершенно очевидно, что бесконтрольный рост населения ставит непосредственную угрозу существования человека как биологического вида.
Итак, потребление энергии на душу населения в мире обнаруживает явную тенденцию к стабилизации. Следует отметить, что этот процесс начался еще около 25 лет тому назад, т.е. задолго до нынешних спекуляций на глобальном изменении климата. Такое явление в мирное время наблюдается впервые с начала индустриальной эпохи и связано с массовым переходом стран мира в новую, постиндустриальную стадию развития, в которой потребление энергии на душу населения остается постоянным. Указанный факт имеет весьма важное значение, поскольку в результате и величина общего потребления энергии в мире растет гораздо более медленными темпами. Можно утверждать, что серьезное замедление темпов роста энергопотребления оказалось полной неожиданностью для многих прогнозистов.

Кризис топливных ресурсов

В начале 70-х годов страницы газет запестрели заголовками: «Энергетический кризис!», «Надолго ли хватит органического топлива?», «Конец нефтяного века!», «Энергетический хаос». Этой теме до сих пор большое внимание уделяют все средства массовой информации - печать, радио, телевидение. Основания для такой тревоги есть, ибо человечество вступило в сложный и достаточно долгий период мощного развития своей энергетической базы. Поэтому следуете просто расходовать известные сегодня запасы топлива, но расширяя масштабы современной энергетики, отыскивать новые источники энергии и развивать новые способы её преобразования.
Прогнозов о развитии энергетики сейчас очень много. Тем не менее, несмотря на улучшившуюся методику прогнозирования, специалисты, занимающиеся прогнозами, не застрахованы от просчетов, и не имеют достаточных оснований говорить о большой точности своих прогнозов для такого временного интервала, каким являются 40-50 лет.
Человек всегда будет стремиться обладать как можно большим количеством энергии, обеспечивающим движение вперед. Не всегда наука и техника дадут ему возможность получать энергию во всевозрастающих объемах. Но, как показывает историческое развитие, обязательно будут появляться новые открытия и изобретения, которые помогут человечеству сделать очередной качественный скачок и пойти к новым достижениям ещё более быстрыми шагами.
Тем не менее, пока проблема истощения энергетических ресурсов остается. Ресурсы, которыми обладает Земля, делятся на возобновляемые и невозобновляемые . К первым относятся солнечная энергия, тепло Земли, приливы океанов, леса. Они не прекратят существования, пока будут Солнце и Земля. Невозобновляемые ресурсы не восполняются природой или восполняются очень медленно, гораздо медленнее, чем их расходуют люди. Скорость образования новых горючих ископаемых в недрах Земли определить довольно трудно. В связи с этим оценки специалистов различаются более чем в 50 раз. Если даже принять самое большое это число, то все равно скорость накопления топлива в недрах Земли в тысячу раз меньше скорости его потребления. Поэтому такие ресурсы и называют невозобновляемыми. Оценка запасов и потребления основных из них приведена в табл.5.44. В таблице приведены потенциальные ресурсы. Поэтому при существующих сегодня методах добычи из них можно извлечь только около половины. Другая половина остается в недрах. Именно поэтому, часто утверждают, что запасов хватит на 120-160 лет. Большую тревогу вызывает намечающееся истощение нефти и газа, которого (по имеющимся оценкам) может хватить всего на 40-60 лет.
С углем свои проблемы. Во-первых, его транспортировка - дело весьма трудоемкое. Так в России, основные запасы угля сосредоточены на востоке, а основное потребление - в европейской части. Во-вторых, широкое использование угля связано с серьезным загрязнением атмосферы, засорением поверхности земли и ухудшением почвы.
В разных странах все перечисленные проблемы выглядят различно, но решение их почти везде было одно - внедрение атомной энергетики. Запасы уранового сырья тоже ограничены. Однако если говорить о современных тепловых реакторах усовершенствованного типа, то для них, вследствие достаточно большой их эффективности, можно считать запасы урана практически безграничными.
Так почему же люди заговорили об энергетическом кризисе, если запасов только органического топлива хватит на сотни лет, а в резерве ещё ядерное?
Весь вопрос в том, сколько оно стоит. И именно с этой стороны нужно рассматривать сейчас энергетическую проблему. в недрах земли ещё много, но их добыча Нефти, газа стоит все дороже и дороже, так как эту энергию приходится добывать из более бедных и глубоко залегающих пластов, из небогатых месторождений, открытых в необжитых, труднодоступных районах. Гораздо больше приходится и придется вкладывать средств для того, чтобы свести к минимуму экологические последствия использования органического топлива.
Атомная энергия внедряется сейчас не потому, что она обеспечена топливом на столетия и тысячелетия, а, скорее из-за экономии и сохранения на будущее нефти и газа, а также из-за возможности уменьшения экологической нагрузки на биосферу.
Существует распространенное мнение, что стоимость электроэнергии АЭС значительно ниже стоимости энергии, вырабатываемой на угольных, а в перспективе - и газовых электростанциях. Но если подробно рассмотреть весь цикл атомной энергетики (от добычи сырья до утилизации РАО, включая расходы на строительство самой АЭС), то эксплуатация АЭС и обеспечение ее безопасной работы оказываются дороже, чем строительство и работа станции такой же мощности на традиционных источниках энергии (табл.5.8 на примере экономики США).
Поэтому в последнее время все больший акцент делается на энергосберегающих технологиях и возобновляемых источниках - таких как солнце, ветер, водная стихия. Например, в Европейском союзе поставлена цель к 2010-2012 гг. получать 22% электроэнергии с помощью новых источников. В Германии, например, уже в 2001 г. энергия, производимая от возобновимых источников, была равносильна работе 8 атомных реакторов, или 3.5% всей электроэнергии.
Многие считают, что будущее принадлежит дарам Солнца. Однако, оказывается и здесь все не так просто. Пока стоимость получения электроэнергии с применением современных солнечных фотоэлектрических элементов в 100 раз выше, чем на обычных электростанциях. Однако специалисты, занимающиеся фотоэлементами, полны оптимизма, и считают, что им удастся существенно снизить их стоимость.
Точки зрения специалистов на перспективы использования возобновляемых источников энергии очень различаются. Комитет по науке и технике в Англии, проанализировав перспективы освоения таких источников энергии, пришел к выводу, что их использование на базе современных технологий пока минимум в два-четыре раза дороже строительства АЭС. Другие специалисты в различных прогнозах этим источникам энергии уже в недалеком будущем. По-видимому, источники возобновляемой энергии будут применяться в отдельных районах мира, благоприятных для их эффективного и экономичного использования, но в крайне ограниченных масштабах. Основную долю энергетических потребностей человечества должны обеспечить уголь и атомная энергетика. Правда, пока нет настолько дешевого источника, который позволил бы развивать энергетику такими быстрыми темпами, как бы этого хотелось.
Сейчас и на предстоящие десятилетия наиболее экологичным источником энергии представляются ядерные, а затем, возможно, и термоядерные редакторы. С их помощью человек и будет двигаться по ступеням технического прогресса. Будет двигаться до тех пор, пока не откроет и не освоит какой-либо другой, более удобный источник энергии.
На рис.5.38 приведен график роста мощности АЭС в мире и производства электроэнергии за 1971-2006 гг., и прогнозы развития на 2020-30 гг. Помимо упомянутых выше, несколько развивающихся стран, таких, как Индонезия, Египет, Иордания и Вьетнам, заявили о возможности создания АЭС и сделали первые шаги в этом направлении.



Рис.5.38. (наверху ) Рост мощности АЭС и производства электроэнергии за 1971-2006 гг. по данным МАГАТЭ и прогнозы мощности АЭС в Мире на 2020-2030 гг. (внизу )

Экологический кризис энергетики

Основные формы влияния энергетики на окружающую среду состоят в следующем.

  1. Основной объем энергии человечество пока получает за счет использования невозобновимых ресурсов.
  2. Загрязнение атмосферы: тепловой эффект, выделение в атмосферу газов и пыли.
  3. 3. Загрязнение гидросферы: тепловое загрязнение водоемов, выбросы загрязняющих веществ.
  4. Загрязнение литосферы при транспортировке энергоносителей и захоронении отходов, при производстве энергии.
  5. Загрязнение радиоактивными и токсичными отходами окружающей среды.
  6. Изменение гидрологического режима рек гидроэлектростанциями и как следствие загрязнение на территории водотока.
  7. Создание электромагнитных полей вокруг линий электропередач.

Согласовать постоянный рост энергопотребления с ростом отрицательных последствий энергетики, учитывая, что в ближайшее время человечество ощутит ограниченность ископаемого топлива, можно, по-видимому, двумя способами

  1. Экономия энергии. Степень влияния прогресса на экономию энергии можно продемонстрировать на примере паровых машин. Как известно, КПД паровых машин 100 лет назад составлял 3-5%, а сейчас достигает 40%. Развитие мировой экономики после энергетического кризиса 70 годов также показало, что на этом пути у человечества есть значительные резервы. Применение ресурсосберегающих и энергосберегающих технологий обеспечило значительное сокращение потребления топлива и материалов в развитых странах.
  2. Развитие экологически более чистых видов производства энергии. Решить проблему, вероятно, способно развитие альтернативных видов энергетики, особенно базирующихся на использовании возобновляемых источников. Однако пути реализации данного направления пока не очевидны. Пока возобновимые источники дают не более 20 % общемирового потребления энергии. Основной вклад в эти 20% дают использование биомассы и гидроэнергетика.

Экологические проблемы традиционной энергетики

Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). Далее обычно идут гидроэлектростанции (ГЭС) и атомные электростанции (АЭС).

Введение

Всё живое на Земле нуждается в энергии поэтому, вопрос энергетики - одна из важнейших составляющих более глубокой и всеобъемлющей проблемы дальнейшего развития человечества. Однако, помимо биологических нужд, человечество по мере технического и научного прогресса становится всё более уязвимо в своей зависимости от внешних источников энергии, необходимых для производства множества товаров и услуг. В целом, энергия позволяет людям жить в меняющихся природных условиях и условиях большой плотности населения, а также контролировать своё окружение. Степень такой зависимости определяется многими факторами - начиная климатом и заканчивая уровнем жизни в данной стране: очевидно, что чем комфортнее человек делает свою жизнь, тем больше он зависит от внешних источников энергии.

Проблема обеспечения человечества энергией. От истоков до наших дней

энергетика экономика экологический анропогенный

Человек с момента своего появления нуждался в энергетических ресурсах. На раннем этапе развития он удовлетворял эту потребность через пищу. Но с развитием человечества росли его энергетические потребности и расширялись возможности их удовлетворения. На первых этапах развития цивилизации использовались первичные природные энергетические ресурсы - древесина, затем ископаемый уголь. Постепенно начинает использоваться энергия ветра и воды. Примитивные ветряные двигатели (ветряные мельницы) появились еще 2 тысячи лет назад. Природный битум начал использоваться 1 тысячу лет назад. Первые нефтяные скважины появились в XVII веке, а в середине XIX века началась промышленная добыча нефти и газа. В эпоху индустриализации потребность в энергетических ресурсах резко увеличивается, но расширяются и возможности человечества: началось производство электроэнергии с использованием гидроресурсов, энергии Солнца и атомной энергии. Использование энергетических ресурсов во все времена ограничивалось запасами природных энергоресурсов, возможностями человека извлекать энергию из этих энергоресурсов и последствиями их извлечения и использования.

Локальные энергетические кризисы возникали и в доиндустриальной экономике (например, в Англии XVIII в. в связи с исчерпанием лесных ресурсов и переходом на уголь). Но как глобальная проблема нехватка энергоресурсов проявилась в 70-х гг. XX в., когда разразился энергетический кризис, выразившийся в резком повышении цены на нефть (в 14,5 раза в 1972-1981 гг.), что создало серьезные трудности для мировой экономики. Хотя многие затруднения того времени были преодолены, глобальная проблема обеспечения топливом и энергией сохраняет свое значение и в наши дни.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса -- увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.). А рост спроса на эти ресурсы усилил конкуренцию как стран -- экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам.

Вместе с тем происходит дальнейшее наращивание ресурсов минерального топлива. Под влиянием энергетического кризиса активизировались крупномасштабные геологоразведочные работы, приведшие к открытию и освоению новых месторождений энергоресурсов. Соответственно возросли и показатели обеспеченности важнейшими видами минерального топлива: считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа -- на 62 года, а нефти -- на 37 лет (если в начале 70-х гг. считалось, что обеспеченность мировой экономики запасами нефти не превышает 25-30 лет; разведанные запасы угля еще в 1984 г. оценивались в 1,2 трлн. т, то к концу 90-х гг. они выросли до 1,75 трлн. т).

В результате преобладавшие в 70-х гг. пессимистические прогнозы обеспеченности потребностей мировой экономики в энергоносителях (так, тогда считалось, что запасов нефти хватит не более чем на 25-30 лет) сменились оптимистическими взглядами, основанными на актуальной информации.

Московский государственный институт международных отношений (У) МИД России

кафедра мировой экономики

Доклад на тему
«Энергетическая проблема мира и пути её решения»

Работу выполнила: студентка 11 группы I курса факультета МЭО
Бадовская Н.В.
Научный руководитель: Комиссарова Ж.Н.

Москва
2006

Всё живое на Земле нуждается в энергии. Однако помимо биологических нужд, человечество по мере технического и научного прогресса становится всё боле уязвимо в своей зависимости от внешних источников энергии, необходимых для производства множества товаров и услуг. В целом, энергия позволяет людям жить в меняющихся природных условиях и условиях большой плотности населения, а также контролировать своё окружение. Степень такой зависимости определяется многими факторами – начиная климатом и заканчивая уровнем жизни в данной стране: очевидно, что чем комфортнее человек делает свою жизнь, тем больше он зависит от внешних источников энергии. Великолепным примером такой зависимости может стать США, по словам Дж. Буша, «пристрастившиеся к нефти, импортируемой из нестабильных регионов», и Европа, практически всецело полагающаяся на поставки энергоресурсов из России. Новые технологии позволяют снизить потребление энергии, сделать его более разумным и применять новейшие, наиболее эффективные способы её получения и использования.

Но потребление любых энергоресурсов имеет пределы количественного расширения. К началу XXI века многие вопросы уже достигли общемирового значения. Запасы одних из самых важных полезных ископаемых – нефти и газа – постепенно приближаются к истощению, а полное их исчерпание может произойти уже в ближайшее столетие.

Тесно связаны с энергетикой также экологические проблемы, сопряжённые со сказывающимся влиянием использования и переработки энергии, – в первую очередь, климатические изменения.

Таким образом, вопрос энергетики – одна из важнейших составляющих более глубокой и всеобъемлющей проблемы дальнейшего развития человечества, поэтому на сегодняшний день как никогда остро стоит задача найти новые выгодные источники энергии.

В настоящее время для производства энергии наиболее широко используются топливные ресурсы, обеспечивая около 75% её мировой выработки. О их преимуществах можно много говорить – они относительно локализованы в нескольких крупных скоплениях, легки в эксплуатации и дают дешёвую энергию (если, конечно, не учитывать ущерб от загрязнения). Но есть и ряд серьёзных недостатков:

    Запасы топливных ресурсов уже в обозримом будущем истощатся, что приведёт к тяжёлым последствиям для стран, зависящих от них.

    Добыча полезных ископаемых становится более тяжёлой, дорогой и опасной по мере того, как мы используем самые доступные бассейны.

    Нефтяная зависимость привела к фактической монополизации, войнам и социально-политической дестабилизации.

    Добыча полезных ископаемых вызывает тяжёлые экологические проблемы.

Одним из перспективных направлений энергетики является ядерная энергетика.

В атомных электростанциях электричество вырабатывается в ходе реакций ядерного распада, сопровождающихся огромным выделением энергии при сжигании относительно небольшого количества топлива. При данном уровне потребления исследованных месторождений урана хватит более чем на 5 000 000 000 лет – за это время успеет сгореть даже наше Солнце.

Вероятность катастроф и аварий на АЭС несколько сдерживает развитие этой отрасли, вызывая недоверие общественности к ядерной энергетике. Однако в исторической перспективе аварии на тепло- и гидроэлектростанциях стали причиной смерти куда большего количества людей, не говоря уже об ущербе экологии.

Ещё одним способом получения энергии, волнующим умы учёных уже не первое десятилетие, является ядерный синтез. При ядерном синтезе выделяется в сотни раз больше энергии, чем при распаде, а запасов топлива для таких реакторов хватит на многие миллиарды лет. Однако подобную реакцию пока что не удаётся поставить под контроль, и появление первых таких установок ожидается не ранее 2050 года.

Альтернативу этим видам энергоресурсов, возможно, смогут составить возобновляемые источники: гидроэнергия, энергия ветра и приливных волн, солнечная, геотермальная, термальная энергия вод океана и биоэнергия.

До промышленной революции возобновляемые ресурсы были основным источником энергии. Твёрдое биотопливо – к примеру, дерево – всё ещё сохраняет своё значение для бедного населения развивающихся стран.

Биомасса (сжигание органических материалов для генерирования энергии), биотопливо (переработка биоматериалов для синтеза этанола) и биогаз (анаэробная переработка биологически отходов) – ещё одни возобновляемые источники энергии, которые не стоит сбрасывать со счёта. Они не могут обеспечить производства энергии в глобальных масштабах, однако способны вырабатывать до 10 МВ/ч. К тому же они могут покрыть расходы на утилизацию биоотходов.

Гидроэнергия – единственный возобновляемый источник энергии из используемых в наше время, обеспечивающий значительную долю мирового производства энергии. Потенциал гидроэнергетики раскрыт незначительно, в долгосрочной перспективе объёмы получаемой энергии возрастут в 9-12 раз. Однако строительству новых дамб препятствуют сопряжённые с этим экологические нарушения. В этой связи возрастает интерес к проектам мини-гидроэлектростанций, которым удаётся избежать многих проблем больших дамб.

Солнечные батареи сегодня могут преобразовать около 20% поступающей солнечной энергии в электричество. Однако если создавать особые «светосборники» и занять ими хотя бы 1% земель, используемых под сельхозугодия, это могло бы покрыть всё современное энергопотребление. Причём производительность такого солнечного коллектора от 50 до 100 раз больше, чем производительность средней ГЭС. Солнечные батареи могут быть установлены и на свободной поверхности существующих промышленных инфраструктур, что позволит избежать изъятия земель у парковых и посевных площадей. В данный момент правительство Германии проводит подобную программу, за которой с интересом наблюдают прочие страны.

Благодаря исследованиям удалось выяснить, что фермы водорослей могут улавливать до 10%, термальные солнечные коллекторы – до 80% солнечной энергии, которая впоследствии может быть использована в различных целях.

Энергия ветра на сегодняшний день является одним из самых дешёвых возобновляемых источников. Потенциально она может обеспечить в пять раз больше энергии, чем потребляется в мире сегодня, или 40 раз перекрыть потребность в электричестве. Для этого потребуется занять ветряными электростанциями 13% всей суши, а именно те районы, где особенно сильны движения воздушных масс.

Скорости ветра в море примерно на 90% превосходят скорости ветра на суше, а это значит, что морские ветряные установки могут вырабатывать куда больше энергии.

Такой способ получения энергии также возымел бы действие на экологию, смягчая парниковый эффект.

Геотермальная энергия, термальная энергия океана и энергия приливных волн – единственные на данный момент возобновляемые источники, не зависящие от солнца, однако они «сосредоточены» в определённых областях. Вся доступная энергия приливов может обеспечить около четверти современного энергопотребления. В настоящее время существуют масштабные проекты создания приливных электростанций.

Геотермальная энергия имеет огромный потенциал, если принимать в расчет всё тепло, заключённое внутри Земли, хотя тепло, выходящее на поверхность, составляет 1/20 000 от той энергии, что мы получаем от Солнца, или около 2-3 раз больше энергии приливов.

На данном этапе главными потребителями геотермальной энергии являются Исландия и Новая Зеландия, хотя виды на такого рода разработки имеют многие страны.

Рассмотренные виды энергоресурсов отнюдь не лишены недостатков.

Применение большинства технологий, связанных с использованием возобновляемых ресурсов, требует больших затрат, и нередко локация таких станций крайне неудобна, что в конечном итоге делает эти источники нерентабельными и недоступными для потребителя. С другой стороны, многие источники позволяют создавать небольшие производства, расположенные в непосредственной близости от потребителя энергии, как, например, солнечные батареи.

Ещё одной проблемой является негативное воздействие на окружающую среду. К примеру, строительство плотин, как ни странно, способствует парниковому эффекту – разлагающаяся органика затопленных районов выделяет углекислый газ. В целом страдает вся экосистема перекрываемой реки.

Помимо геотермальных и гидроэлектрических ресурсов, которые обладают определённой спецификой местоположения, прочие альтернативные источники энергии зачастую оказываются более дорогими и неудобными в использовании, чем привычные топливные ископаемые. Пожалуй, единственной областью их применения остаются отдалённые районы с неразвитой инфраструктурой, где дешевле оказывается строить ветряные и прочие станции, чем подвозить топливо морем или сушей, а также малоразвитые регионы Земли.

Иной путь решения энергетической проблемы – это интенсификация. Новые технологии позволяют полнее использовать доступную энергию, повышая эффективность оборудования – например, более эффективные флуоресцентные лампы, двигатели, изоляционные материалы. Тепло, которое тратится впустую, уходя в окружающую среду, посредством теплообменников может быть использовано для нагревания воды и центрального отопления зданий.

Уже существующие электростанции могут работать более продуктивно при минимуме затрат и преобразований благодаря новым технологиям. Новые электростанции можно сделать более эффективными при помощи таких технологий, как «когенерирование». Новые архитектурные решения могут включать использование солнечных коллекторов. Светодиоды постепенно заменяют устаревшие электрические лампочки. Естественно, ни один из этих методов не предлагает технологии вечного двигателя, и часть энергии всегда уходит «на обогрев».

В отдалённом будущем огромное количество новых источников энергии могут принести исследовании космоса, хотя вряд ли они актуальны при решении сегодняшних проблем энергетики.

В ближайшей же перспективе мы можем позволить себе гелиоэнергетические орбитальные станции, 24 часа в сутки собиравшие бы энергию солнца и передававшие бы её на Землю посредством микроволн. Фундаментальные исследования в этой области позволят в дальнейшем сделать такой вид получения энергии рентабельным и конкурентоспособным в сравнении с земными источниками.

Ядерное топливо теоретически можно добывать на астероидах, однако технические препятствия бурению скважин на астероидах гораздо тяжелее преодолеть, чем трудности, связанные с использованием огромных запасов урана-238 на Земле.

Другая интересная возможность – это добыча изотопа гелия-3, недоступного на Земле, на Луне. Этот вид топлива может быть использован в особом виде реакций распада, имеющих преимущества по сравнению с расщеплением обычного урана.

Ну, а в самом отдалённом будущем, человечество, освоившееся в космосе, будет обладать огромным выбором энергоресурсов. И тогда, вероятно, оно сможет использовать гигантский потенциал Чёрных дыр, о возможности чего учёные задумываются уже сейчас.

Дальнейшее развитие энергетики в любом случае столкнётся с трудностями: растущим населением, удовлетворением запросов более высокого уровня жизни, требованием более экологически чистого производства и исчерпанием полезных ископаемых. Для того, чтобы избежать энергетических кризисов, нужно помнить следующее:

    решение энергетической проблемы невозможно без обращения пристального внимания на экологический аспект;

    только комплексный подход, предусматривающий более эффективное использование как уже известных, так и альтернативных источников, позволит в дальнейшем удовлетворить потребность человечества в электроэнергии;

    разработка и внедрение новых технологий позволят открыть доступ к новым источникам энергии, недоступным на сегодняшний день.

В заключение хотелось бы привести слова секретаря Департамента Энергетики США Самюэля Бодмана: «На сегодня мировая экономика для того, чтобы развиваться, нуждается в нефти. Нам же необходимы пути достижения её роста, которые одновременно уменьшали бы нашу зависимость от топливных ископаемых и расширяли бы использование более чистых и надёжных источников энергии. Если говорить коротко, нам нужно разнообразие. Оно не будет дешевле или проще, но оно необходимо. В сущности, всё зависит от него. Поэтому надо просто его обеспечить».

Сырьевая проблема включает в себя построение на двух уровнях - национальном и международном (глобальном) - механизма, регулирующего рациональное производство, распределение и использование сырьевых ресурсов, а также развитие технологической основы для достижения этих целей. Энергетическая проблема несет в себе необходимость сбалансированного развития структуры энергобаланса и учета пределов производства энергии, а также механизма распределения энергоресурсов. Энергетические ресурсы во всей истории цивилизации играли важную роль для ее развития. Взлет цивилизаций древности зиждился на энергетических ресурсах массы рабов (считается, что 1 кВт/ч электроэнергии эквивалентен работе человека в течение 8 ч).

Как область экономики, энергетика охватывает энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Она является одним из основных средств жизнеобеспечения человечества и в то же время обусловливает истощение невозобновимых природных ресурсов и примерно 50% загрязнения окружающей среды. Ресурсная ограниченность нашей планеты делает острой проблемой энергосырьевой безопасности. Действительно, если экологические перспективы цивилизации поставить в зависимость от одного фактора, отличного от «глобальных экологических благ», этим фактором будут энергетические ресурсы. Человечество постоянно использовало все новые источники энергии: первоначально уголь, затем нефть, позднее природный газ и атомную энергию. За последние полтора века применение этих источников позволило человечеству развить экономику высоких достижений при одновременном увеличении населения Земли в четыре раза.

На нефть среди разнообразных источников энергии (уголь, нефть, газ, ядерная энергия, гидроэлектростанции, энергия ветра и солнца, биоэнергия) в последнее столетие приходилось 40% используемой энергии. На второй по значимости источник энергии - газ приходилось 25%. Предположительно нефть сохранит значение ведущего источника энергии и к 2030 г.

В энергетике различают традиционную и альтернативную составляющие. Традиционная энергетика основана на получении энергии из углеводородных энергоносителей (уголь, нефть, природный газ), а также к ней относятся атомная и гидроэнергетика. Возможности этого вида энергетики ограничены исчерпаемостью энергоносителей и значительным загрязнением окружающей среды. Исключением при этом является гидроэнергия, использование которой сопровождается затоплением значительных территорий (особенно при строительстве гидростанций в равнинных условиях). Во избежание грядущих глобальных ядерных катастроф и ради выживания человечества необходимо общее комплексное снижение ядерной опасности не только путем прекращения ядерных испытаний, нераспространения ядерного оружия и высоких ядерных технологий, но и путем (может быть, в перспективе) постепенного отказа от АЭС.

В научной литературе фиксируются три подхода к использованию атомной энергии в мирных целях: 1) в одних странах (Швеция, Норвегия и др.) реализуется программа консервирования и демонтажа существующих АЭС; 2) в других (Австрия, Бельгия и др.) полностью отказались от строительства АЭС, так как они не рассматриваются более как перспективные; 3) в третьих странах (Китай, Россия) сохраняется ориентация на развитие атомной энергетики (при этом основное внимание уделяется разработке мер по обеспечению ядерной безопасности). По данным Всемирной атомной ассоциации, сегодня в мире работает 443 атомных реактора, 62 энергоблока строится и запланировано строительство еще полутора сотен. Лидер в атомной энергетике - США, здесь работают свыше сотни реакторов. Быстрее всех мирный атом развивает Китай. Пекин строит 27 реакторов, запланировано возведение 50 ядерных энергоблоков.

При выборе энергетических предпочтений следует учитывать, что весь цикл строительства, функционирования и демонтажа АЭС, включая радиоактивные отходы, представляет определенную угрозу ядерной безопасности [Глобалистика, с. 1290-12941.

Во-первых, риск подрыва ядерной безопасности (нс только локальной, но и глобальной) связан с самим процессом получения энергии. Несмотря на то что ядерное производство постоянно контролируется на всех его этапах, но определенная утечка радиоактивных загрязнений в окружающую среду все же происходит, в результате чего население подвергается непрерывному облучению малыми дозами, что ведет к возрастанию онкологических и генетических заболеваний.

Во-вторых, важно учитывать, ограниченный срок службы любой АЭС. Предполагается, что в начале XXI в. по причине устаревания будут остановлены первые крупные АЭС (стоимость этих операций равняется 50-100% затрат на их сооружение).

В-третьих, не менее сложной представляется проблема обеспечения длительного экологически безопасного хранения радиоактивных отходов.

В-четвертых, самую большую угрозу ядерной безопасности представляет возможность аварии на АЭС. К началу XXI в. зафиксировано уже более 150 аварий на АЭС с утечкой радиоактивности. Авария на АЭС «Фукусима» в Японии (2011) вновь вынесла на повестку дня вопрос безопасности мирного атома и может оказать негативное влияние на всю атомную энергетику в мире, хотя о долговременных последствиях судить еще рано. Миру нужна энергетическая альтернатива мирному атому. Безусловно, будут разработаны дополнительные нормативы по безопасности, что, в свою очередь, увеличит стоимость строительства ядерпых объектов.

Специалисты считают, что если мировое сообщество будет иметь свыше 1000 реакторов, то каждые 10 лет с большой вероятностью следует ожидать тяжелую аварию. Для обеспечения ядерной безопасности необходим эффективный международный контроль (повышается роль МАГАТЭ), особенно в условиях массовой приватизации ядерного энергетического сектора в мире, когда значительно ослабляется контроль государства над ним. В этих условиях требуется пересмотр прежних подходов к традиционным и освоение новых технологий получения энергии из альтернативных источников, которые, возможно, начнут играть в XXI в. значительную роль.

Так, Китай наращивает потребление основных источников топлива. Согласно новому пятилетнему плану развития Китая, к 2015 г. потребление газа в этой стране вырастет со 100 млрд до 250 млрд м 3 в год. Для газа на мировом энергетическом рынке наступили «золотые времена», как и для его производителей. Потребление растет во всех регионах мира, особенно в Юго-Восточной Азии. Впрочем, там же разрабатываются и новые проекты по его добыче. В Азиатско-Тихоокеанском регионе скоро появятся мощности по добыче до 90 млрд м 3 газа в год, уже строятся мощности на 60 млрд м 3 добычи. Не исключается появление в перспективе и нетипичных на сегодня источников газа. В США и Канаде уже добывают сланцевый газ. В Китае, Индонезии и Австралии находится большое количество угольного метана. Спрос на нефть как основное энергетическое сырье остается высоким. В 2010 г. Россия получила от продажи энергоносителей за рубеж около 230 млрд долл. [Современная мировая политика; Уткин].

Альтернативные источники энергии противопоставляются традиционной энергетике как более экологичные и представляют собой собирательное понятие, охватывающее возобновляемые источники энергии (тепловые насосы, ветровая энергия, солнечная энергия, энергия приливов, биотехнологические процессы). Они становятся экономически все более выгодными, поскольку стоимость солнечных батарей за последние десятилетия сократилась и ожидается продолжение этой тенденции. Развитие альтернативной энергетики стимулируют в Японии (солнечная энергетика), Бразилии (принятая программа финансовой поддержки производства этилового спирта из сахарного тростника позволила заменить этим горючим половину бензина, потребляемого автомобилями страны) и других странах.

Исторический опыт позволил выделить ряд главных узлов, которые связывают энергетику и мировую политику. Во-первых, гипертрофированность зависимости энергетики многих стран от одного-двух энергоносителей. Политические противоречия между государствами могут обостряться из-за физической нехватки источников энергии, резких колебаний цен на них, а также из-за экологических последствий используемых энергоносителей. Во-вторых, опасность большого физического объема мировой торговли энергоресурсами. Опасность заключается в уязвимости гигантской международной транспортной инфраструктуры. По каналам мировой торговли поступает около трети первичных ресурсов, в том числе 50% всей добычи сырой нефти, сотни миллионов тонн угля, десятки миллиардов кубометров природного газа. В целом протяженность магистральных нефтепроводов 27 стран (которые охватывает статистика ООН) достигает 436 тыс. км. Ежегодно по этой трубопроводной сети прокачивается более 2 млрд т нефти и нефтепродуктов. Растянутость и уязвимость международной транспортной энергетической инфраструктуры ведут к тому, что се поддержание и защита рассматриваются правительствами ряда стран как важнейшая задача.

В-третьих, выделяется еще одна группа проблем, которая связана с противоречиями между поставщиком и получателем энергоресурсов, региональными конфликтами. Возникающая из-за этого неуверенность в надежности существующих транспортных коммуникаций все чаще становится обоснованием новых военно-морских и военно-воздушных программ, военно-политических акций, проводимых на международном уровне.

В-четвертых, возрастающая потребность в энергии и одновременная трудность удовлетворения этой потребности делают энергетику предметом острой политической борьбы. Энергетический террор может стать в будущем средством угрозы демократическим реформам, правам личности, глобальному миру и безопасности.

Широкое внедрение энергосберегающих технологий и активное развитие альтернативных источников энергии с 1970-х гг. так и не избавили мир от доминирующей роли углеводородов. Более того, проблема нефтегазового дефицита приобретает угрожающие черты, периодически порождая разговоры о приближении критической точки.

Такие виды возобновляемой энергии, как солнечная, энергия ядерного синтеза, биоэнергия и энергия ветра, станут крайне важными в будущем. Однако инновации в сфере энергетики потребуют многомиллионных инвестиций, и если новые энергетические решения не будут внедрены достаточно быстро, производительность труда и связанный с ним экономический рост сократятся.

Безопасная для мира и человечества энергетика должна включать в себя три главных направления: 1) осуществление качественного скачка в деле снижения потерь при добыче, производстве, транспортировке, преобразовании и потреблении энергоносителей; 2) создание и решительное внедрение энергосберегающих технологий, машин и потребительских товаров; 3) активная разработка и внедрение возобновляемых источников энергии и энергоносителей (солнце, биомасса, реки, ветер, геотермальные источники, энергоресурсы морей и океанов).

Однако с 1973 г. соотношение между основными и неосновными источниками энергии практически не изменилось. Согласно расчетам Международного энергетического агентства (МЭЛ), незначительно оно изменится и к 2030 г. На возобновляемую, альтернативную и прочую нетрадиционную энергию по разным оценкам будет приходиться от 11,4 до 13,5% мирового энергоснабжения, при этом нефть и газ к 2030 г. будут обеспечивать более половины энергетических потребностей [Современная мировая политика; Уткин]. Поскольку сырьевая база высокоразвитых стран, их транснациональных компаний истощается, то растет вес сырьевых стран, в руках которых находится весьма важный стратегический ресурс мировой политики. Такое положение дел приводит к возрастанию потенциала противоречий и конфликтов. Его снижение требует осмотрительности и гибкости от участвующих в политике. Политическая борьба за ресурсы может значительно обостриться из-за возрастающей готовности ряда стран мира для решения своих энергетических задач полагаться на силу. В этом случае экологическая, ресурсная и в целом глобальная безопасность могут быть подорваны, что на какое-то время негативно отразится на эффективности международных усилий по реализации стратегии устойчивого развития и даже может блокировать их.