Закон инерции открыл. I закон, или закон инерции

всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не будет вынуждено изменить его под действием каких-то сил.

II закон . Этот закон по праву является ядром механики. Он связывает изменение импульса тела (количества движения) с действующей на него силой , т.е. изменение импульса тела в единицу времени равно действующей на него силе и происходит в направлении ее действия. Так как в механике Ньютона масса не зависит от скорости (в современной физике, как мы впоследствии увидим, это не так), то

, где а – ускорение противодействия равны по величине и противоположны по направлению. Масса в этом выражении предстает как мера инертности . Нетрудно увидеть, что при постоянной силе воздействия ускорение, которое можно придать телу тем меньше, чем больше его масса.

III закон отражает тот факт, что действие тел всегда носит характер взаимодействия, и что силы действия и противодействия равны по величине и противоположны по направлению.

IV закон, сформулированный Ньютоном – это закон всемирного тяготения.

Логическая цепочка этого открытия может быть выстроена следующим образом. Размышляя о движении Луны, Ньютон сделал вывод, что она на орбите удерживается той же силой, под действием которой камень падает на землю, т.е. силой тяготения: «Луна тяготеет к Земле и силою тяготения постоянно отклоняется от прямолинейного движения и удерживается на своей орбите». Используя формулу своего современника Гюйгенса для центростремительного ускорения и астрономические данные, он нашел, что центростремительное ускорение Луны в 3600 раз меньше ускорения падения камня на Землю. Поскольку расстояние от центра Земли до центра Луны в 60 раз больше радиуса Земли, то можно предположить, что сила тяготения убывает пропорционально квадрату расстояния. Затем, на основе законов Кеплера, описывающих движение планет, Ньютон распространяет этот вывод на все планеты. («Силы, которыми главные планеты отклоняются от прямолинейного движения и удерживаются на своих орбитах, направлены к Солнцу и обратно пропорциональны квадратам расстояний до центра его »).

Наконец, высказав положение о всеобщем характере сил тяготения и одинаковой их природе на всех планетах, показав, что «вес тела на всякой планете пропорционален массе этой планеты», установив экспериментально пропорциональность массы тела и его веса (силы тяжести), Ньютон делает вывод, что сила тяготения между телами пропорциональна массе этих тел. Так был установлен знаменитый закон всемирного тяготения, который записывается в виде:

Где g - гравитационная постоянная, впервые определенная экспериментально в 1798 г. Г. Кавендишем. По современным даннымg = 6,67*10 -11 Н×м 2 /кг 2 .

Важно отметить, что в законе всемирного тяготения масса выступает в качестве меры гравитации , т.е. определяет силу тяготения между материальными телами.

Важность закона всемирного тяготения состоит в том, что Ньютон, таким образом, динамически обосновал систему Коперника и законы Кеплера.

Примечание. О том, что сила тяготения обратно пропорциональна квадрату расстояния, догадывались некоторые ученые и до Ньютона. Но только Ньютон сумел логически обосновать и убедительно доказать этот закон с помощью законов динамики и эксперимента.

Следует обратить внимание на важный факт, свидетельствующий о глубокой интуиции Ньютона. Фактически Ньютон установил пропорциональность между массой и весом , что означало, что масса является не только мерой инертности, но мерой гравитации . Ньютон отлично понимал важность этого факта. В своих опытах он установил, что масса инертная и масса гравитационная совпадают с точностью до 10 -3 . Впоследствии А. Эйнштейн, считая равенство инерционной и гравитационной масс фундаментальным законом природы , положил его в основу общей теории относительности, или ОТО. (Интересно, что в период создания ОТО это равенство было доказано с точностью до 5×10 -9 , а в настоящее время оно доказано с точностью до 10 -12‑ .)

В третьей части книги Ньютон изложил Общую Систему Мира и небесную механику, в частности, теорию сжатия Земли у полюсов, теорию приливов и отливов, движения комет, возмущения в движении планет и т.д. на основе закона всемирного тяготения.

Утверждение Ньютона о том, что Земля сжата у полюсов, было экспериментально доказано в 1735-1744 гг. в результате измерения дуги земного меридиана в экваториальной зоне (Перу) и на севере (Лапландия) двумя экспедициями Парижской Академии наук.

Следующим большим успехом закона всемирного тяготения было предсказание ученым Клеро времени возвращения кометы Галлея. В 1682 г. Галлей открыл новую комету и предсказал ее возвращение в сферу земного наблюдения через 76 лет. Однако в 1758 г. комета не появилась, и Клеро сделал новый расчет времени ее появления на основе закона всемирного тяготения с учетом влияния Юпитера и Сатурна. Назвав время ее появления – 4 апреля 1759 г., Клеро ошибся всего на 19 дней.

(Успехи теории тяготения в решении проблем небесной механики продолжались и в 19 веке. Так в 1846 г. французский астроном Леверье писал своему немецкому коллеге Галле: «направьте ваш телескоп на точку эклиптики в созвездии Водолея на долготе 326 градусов, и вы найдете в пределах одного градуса от этого места новую планету с заметным диском, имеющую вид звезды приблизительно девятой величины.» Эта точка была вычислена Леверье и независимо от него Адамсом (Англия) на основе закона всемирного тяготения при анализе наблюдаемых «неправильностей» в движении Урана и предположения, что вызываются они влиянием неизвестной планеты. И действительно, 23 сентября 1846 г. Галле в указанной точке неба обнаружил новую планету. Так родились слова «Планета Нептун открыта на кончике пера».)

К началу документа

Если тело находится в состоянии покоя по отношению к Земле, то оно будет сохранять свое состояние бесконечно долго, до тех пор, пока другие тела, воздействуя на него, не выведут, рассматриваемое тело, из этого состояния.

Известно, что если тело совершает движение, по отношению к Земле, то изменение его скорости, не может происходить само собой. Изменение величины и направления скорости тела относительно Земли происходит при воздействии на тело со стороны других тел. Возникает вопрос: для того, чтобы тело имело постоянную скорость относительно Земли, является необходимым воздействие на рассматриваемое тело со стороны других тел?

Долгое время, начиная с четвертого века до нашей эры, господствовало мнение, которое сформулировал Аристотель. Он считал, что для того, чтобы тело двигалось (в том числе и с постоянной скоростью) необходимо действие на него со стороны других тел. Так, для того, чтобы автомобиль ехал, двигатель должен всегда работать. Перестал двигатель работать, автомобиль остановился. Следуя за Аристотелем надо было бы сказать, что причиной движения является действие на рассматриваемое тело со стороны других тел. Аристотель обладал очень большим авторитетом, его труды составляют работы по философии, естественным наукам, истории и психологии и др. Аристотель был учителем А. Македонского, который испытывал к своему учителю большой пиетет. Авторитет Аристотеля являлся столь высоким, что его объяснение причин движения господствовали в европейском естествознании более двух тысяч лет.

Закон инерции?

Стоит отметить, что китайские «физики» фрагментарно сформулировали закон инерции между 450 и 250 годами до нашей эры. В работе философа Мо-цзы было написано примерно следующее: Если противодействующей силы нет, то движения тела никогда не прекратится. Мысль о прямолинейности движения по инерции китайцы формулировали так: Если присутствует поддерживающий столб, то движение не прекратится. Оно будет уподоблено переходу по висячему мосту. В переводе на современный язык это означает: В том случае, если на движущееся тело воздействовать с силой направленной под углом к направлению перемещения, то тело будет двигаться по криволинейной траектории.

В Европе понятие инерции было сформулировано Г. Галилеем в середине семнадцатого века, после того, как он провел серию широко известных экспериментов с шарами. Г. Галилей одним из первых пришел к объяснению причин равномерного и ускоренного перемещения тел и исследовал движение по инерции. Однако представления Галилея были не верны до конца, так как он утверждал, что тело, на которое не действуют силы движется равномерно по окружности. Такие представления у ученого были сформированы после изучения движения небесных тел. Так как он считал, что небесные тела движутся сами по себе.

Было бы правильно, говорить, что первым сформулировал закон инерции французский философ, математик Р. Декарт. Он писал о том, что любое тело пребывает одном состоянии до того момента пока не встретится с другим телом. И в другом своем законе Декарт говорит, что любая частица стремится двигаться исключительно по прямой. Однако Декарт дал формулировки своих законов, не зная о силах гравитации и скорее по наитию, чем опираясь на факты, поэтому считают, что закон инерции, который мы знаем, сформулировал И. Ньютон:

Каждое тело находится в состоянии покоя или движется равномерно и прямолинейно, относительно любой инерциальной системы отсчета, до того момента пока действие на него других тел не заставит его изменить свое состояние.

что такое инерция? кто открыл это явление? ..

Инерция (от лат. inertia - бездеятельность, косность) - свойство тел сохранять покой или равномерное прямолинейное движение, если внешние воздействия на него отсутствуют или взаимно скомпенсированы.

Древнегреческие учёные, судя по дошедшим до нас сочинениям, размышляли о причинах совершения и прекращения движения. Аристотель в «Физике» рассуждает о движении в пустоте, ошибкой было стремление установить связь между силой и самой скоростью.

Галилео Галилей (1564-1642) смог исправить эту ошибку, доказав связь между силой и изменением скорости (ускорением). Это открытие Галилея вошло в науку как Закон инерции.

В современном виде закон инерции сформулировал Декарт.

Современная формулировка закона:

Существуют такие системы отсчёта, относительно которых материальная точка при отсутствии внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Закон инерции

Формулировка закона инерции

Любое тело находится в состоянии покоя или движется равномерно и прямолинейно, до того момента пока действие на него других тел не заставит его изменить свое состояние. Этот закон называют первым законом Ньютона. Но, так как способность тела сохранять состояние покоя или равномерного прямолинейного движения носит название инертности, то и данный закон часто называют законом инерции. Свойство тела сохранять без изменения свою скорость, если другие тела на него не действуют, назвали инерцией. Inertia - от латинского бездеятельность, косность.

Закон инерции был первым шагом при установлении основных законов классической механики.

Закон инерции является важным и независимым законом. Он отображает возможность определить пригодность системы отсчета для рассмотрения движения в динамическом и кинематическом смыслах. Без данного критерия не было бы понятно как синхронизировать часы и вводить единое время. Без закона инерции стали бы бессмысленными все уравнения кинематики и динамики. Так, невозможно говорить о равномерном движении, если нельзя синхронизировать часы. Закон инерции наполняет физическим смыслом второй и третий законы Ньютона.

Инерциальные системы отсчета

Движение в механике является относительным, то есть его характер зависит от системы отсчета. Закон инерции справедлив не для любой системы отсчета. Системы отсчета по отношению к которым, выполняется закон инерции носят название инерциальных. Система отсчета называется инерциальной, если она находится в состоянии покоя или равномерного и прямолинейного движения по отношению к другой инерциальной системе отсчета. Получается, что инерциальных систем бесконечно много. Закон инерции утверждает, что инерциальные системы отсчета существуют. В неинерциальной системе отсчета тело может обладать ускорением, если на него не действуют другие тела.

Экспериментально было показано, что инерциальной системой отсчета можно считать гелиоцентрическую систему отсчета, с началом координат в центре Солнца, с осями, проведенными в сторону звезд. Часто говорят, что система отсчета связанная с Землей является инерциальной, но строго говоря, это не так, потому что Земля вращается около собственной оси и вокруг Солнца. Однако при решении многих задач в классической механике эффектами неинерциальности такой системы отсчета можно пренебречь.

Масса тела, сила

Основной характеристикой материи, определяющей ее инерционные свойства, является масса тела. Массу иногда делят на инертную и гравитационную. К настоящему времени доказано, эти виды массы равны друг другу с точностью примерно порядка от величины.

Для описания меры механического воздействия на тело со стороны других тел (полей) которое упомянуто в законе инерции, используют понятие силы. При действии силы на тело, оно или изменяет свою скорость движения, тогда говорят о динамическом проявлении силы, или деформируется, тогда имеют в виду статическое проявление силы. Сила является векторной величиной и определяется величиной и направлением.

Примеры решения задач

2) Если автомобиль движется по криволинейной траектории, то систему отсчёта связанную с ним нельзя считать инерционной.

3) Если машина движется с постоянной скоростью относительно Земли (которую можно принимать за инерционную систему отсчета в данном случае), то и автомобиль будет инерционной системой отсчета.

В результате явления инерции шарик будет отклоняться от вертикали на расстояние (s), равное:

где – разность скоростей, перемещения точек поверхности Земли и дна шахты; t – время, которое тратит тело на падение. можно найти используя понятие период обращения Земли вокруг своей оси (T):

где R – Радиус Земли по экватору.

При свободном падении вертикально под действием силы тяжести Земли имеем:

Тогда время, которое затрачено телом на падение до дна шахты равно:

В таком случае искомое отклонение от вертикали составит:

Великие физики

Главное меню

Исаака Ньютона называют одним из создателей классической физики. Его открытия объясняют многие явления, причину которых до него не удалось разгадать никому.

Принципы классической механики формировались в течение длительного времени. Многие века учёные пытались создать законы движения материальных тел. И только Ньютон обобщил все накопленные к тому времени знания о движении физических тел с точки зрения классической механики. В 1867 г. им была опубликована работа «Математические начала натуральной философии». В этой работе Ньютон систематизировал все знания о движении и силе, подготовленные до него Галилеем, Гюгенсом и другими учёными, а также знания, известные ему самому. На основе всех этих знаний им были открыты известные законы механики и закон всемирного тяготения. В этих законах устанавливаются количественные зависимости между характером движения тел и силами, действующими на них.

Закон всемирного тяготения

Существует легенда, что к открытию закона тяготения Ньютона подтолкнуло наблюдение падающего с дерева яблока. По крайне мере, об этом упоминает Уильям Стьюкли, биограф Ньютона. Говорят, что ещё в молодости Ньютон задумывался над тем, почему яблоко падает вниз, а не в сторону. Но решить эту задачу ему удалось намного позже. Ньютон установил, что движение всех предметов подчиняется общему закону всемирного тяготения, который действует между всеми телами.

«Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».

Яблоко падает на землю под воздействием силы, с которой Земля воздействует на него силой своего гравитационного притяжения. А какое ускорение оно получает, Ньютон объяснил с помощью трёх своих законов.

Первый закон Ньютона

Сам великий Ньютон сформулировал этот закон так: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

То есть, если тело неподвижно, то оно так и останется в таком состоянии до тех пор, пока на него не начнёт действовать какая-то внешняя сила. И, соответственно, если тело движется равномерно и прямолинейно, то оно будет продолжать своё движение до момента начала воздействия внешней силы.

Первый закон Ньютона называют ещё Законом инерции. Инерция – это сохранение телом скорости движения, когда на него не оказывают действие никакие силы.

Второй закон Ньютона

Если первый закон Ньютона описывает, как ведёт себя тело, если на него не действуют силы, то второй закон помогает понять, что происходит с телом, когда сила начинает действовать.

Величина силы, действующей на тело, равна произведению массы тела на ускорение, которое получает тело, когда на него начинает действовать сила.

В математическом виде этот закон выгляди так:

Где F – сила, действующая на тело;

a – ускорение, которое получает тело под воздействием приложенной силы.

Из этого уравнения видно, что чем больше величина силы, воздействующей на тело, тем большее ускорение оно получит. И чем больше масса тела, на которое воздействует эта сила, тем меньше ускорит своё движение тело.

Третий закон Ньютона

Закон гласит, что если тело А воздействует на тело В с какой-то силой, то и тело В воздействует с такой же силой на тело А. Иными словами сила действия равна силе противодействия.

Например, ядро, вылетающее из пушки, действует на пушку с силой, равной силе, с какой пушка выталкивает ядро. В результате действия этой силы после выстрела пушка откатывается назад.

Из своих общих законов движения Ньютон вывел множество следствий, которые позволили сделать теоретическую механику практически совершенной. Открытый им закон всемирного тяготения связал все планеты, находящиеся на огромном расстоянии друг от друга, в единую систему и положил начало небесной механике, которая изучает движение планет.

С момента создания Ньютоном его законов прошло много времени. Но все эти законы актуальны до сих пор.

кинематике

Первый закон динамики (или закон инерции) из всего многообразия систем отсчета выделяет класс так называемых инерциальных систем. Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению. Свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией . Поэтому первый закон динамики называют законом инерции . Впервые закон инерции был сформулирован Галилео Галилеем (1632 г.). В классической механике законы взаимодействия тел формулируются для класса инерциальных систем отсчета. При описании движения тел вблизи поверхности Земли системы отсчета, связанные с Землей, приближенно можно считать инерциальными. Однако, при повышении точности экспериментов, обнаруживаются отклонения от закона инерции, обусловленные вращением Земли вокруг своей оси. Примером тонкого механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко .

Рисунок 1. Поворот плоскости качаний маятника Фуко.

С высокой степенью точности инерциальной является гелиоцентрическая система отсчета (или система Коперника), начало которой помещено в центр Солнца, а оси направлены на далекие звезды. Эту систему усовершенствовал Иоганн Кеплер, открыв, что тела в Солнечной системе движутся по коническим сечениям (эллипсам, параболам и гиперболам). Позднее Роберт Гук открыл закон всемирного тяготения (1667 г.). Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы. Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины – инертную массу тела и силу .

Первый закон динамики — закон инерции Галилея

При движении тела по траектории его скорость может изменяться по модулю и направлению. Это означает, что тело двигается с некоторым ускорением . В кинематике не ставится вопрос о физической причине, вызвавшей ускорение движения тела. Как показывает опыт, любое изменение скорости тела возникает под влиянием других тел.

Динамика рассматривает действие одних тел на другие как причину, определяющую характер движения тел. Взаимодействием тел принято называть взаимное влияние тел на движение каждого из них.

Раздел механики, изучающий законы взаимодействия тел, называется динамикой. Законы динамики были открыты великими учеными Галилео Галилеем (первый закон динамики, закон инерции, в 1632), Рене Декартом (второй закон — строго сформулирован в его «Началах», 1644) и Христианом Гюйгенсом (третий закон в 1669). Три закона динамики, сформулированные этими классиками, лежат в основе классической механики. Законы динамики следует рассматривать как обобщение опытных фактов. Выводы классической механики справедливы только при движении тел с малыми скоростями, значительно меньшими скорости света c. Самой простой механической системой является изолированное тело , на которое не действуют никакие тела. Так как движение и покой относительны, в различных системах отсчета движение изолированного тела будет разным. В одной системе отсчета тело может находиться в покое или двигаться с постоянной скоростью, в другой системе это же тело может двигаться с ускорением.

Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1).

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой. Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, то есть в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям:

  • Приказ Министерства транспорта РФ от 4 мая 2018 г. N 180 "О признании не подлежащими применению актов Министерства путей сообщения Российской Федерации" В связи с выявленными нарушениями порядка принятия (утверждения) нормативных актов […]
  • Пропорциональность отображаемых объектов. Разрешение экрана Подскажите рабочий метод, который позволяет сохранять пропорции фигуры в зависимости от разрешения экрана пользователя. (к примеру квадрат должен оставаться квадратом) Добавлено […]
  • Закон о ребёнке в авто О наших детях мы готовы говорить до бесконечности, вспоминать все их проделки и радости, которые они нам дарят… Но всегда ли сами мы с должным вниманием относимся к ним? Не используем мы их порой лишь для […]
  • Техосмотр в Росгосстрахе Среди множества страховых компаний, имеющих внушительный опыт в своей деятельности, СК «Росгосстрах» совершенно обосновано и уверенно может предложить надежные программы страхования, а также ряд других […]
  • За чей счет производится комплектация тревожного чемоданчика в МВД? На основании Утвержденного приказом МВД России от 22.12.2006г. № М/091 "O внесении изменений в приказ МВД России от 27.03.2001г. № М/016" про экипировку личного состава […]
  • Помогите с красордом по физике нужны ответы помогите пожалуйста кто знает

    2. Сила, с которой тело действует на опору или растягивает подвес.
    7. Процесс перехода от ручного труда к машинному.
    9. Физическая величина - мера взаимодействия материальных объектов.
    11. Единица громкости.
    12. Итальянский физик, открывший закон падения тел.
    14. Наибольшее отклонение тела от положения равновесия.
    18. Летательный аппарат с реактивным двигателем.
    19. Прибор - источник звука одной частоты, представляющий собой изогнутые металлические стержни на ножке.
    20. Физическая величина, характеризующая быстроту изменения положения тела.
    По вертикали:
    1. Направленный отрезок, соединяющий начальное положение тела

    Помогите пожалуйста!!

    1.Шарик движется под действием постоянной по модулю и направлению силы.Выберите правильное утверждение:
    А.Скорость шарика не изменяется.
    Б.Шарик движется равномерно.
    В.Шарик движется с постоянным ускорением.
    2.КАк движется шарик массой 500г. под действием силы 4 Н?
    А.С ускорением 2 м/с(в квадрате)

    Б.С постоянной скоростью 0,125м/с.
    В.С постоянным ускорение 8м/с(в квадрате)
    3.В каких приведённых ниже случаев идёт речь о движении тел по инерции?
    А.Тело лежит на поверхности стола.
    Б.Катер после выключения двигателя продолжает двигаться по повехности воды
    В.Спутник движется по орбите вокруг Солнца.

    4.а)почему первый закон Ньютона называют законом инерции?
    б.как движется тело,если векторная сумма действующих на него сил равна нулю?
    в.О векторное стекло движущегося автомибиля ударился комар.Сравните силы,действующие на комара и автомобиль во время удара.
    5.а.При каком условии тело может двигаться равномерно и прямолинейно?
    б.С помощью двух одинаковых воздушных шаров подминают из состояния покоя разные тела.По какому признаку можно заключить,у какого из этих тел болльшая масса?
    в.Мяч ударяет в оконное стекло.На какое из тел(мяч или стекло) действует при ударе большая сила?
    7.а.На столе лежит брусок.Какие силы дейчствуют на него?Почему брусок покоится?
    б.С каким ускорением движется при разбеге реактивный самолёт ммассой 60 т.,ксли сила тяги двигателей 90 кН?
    в.Теплоход при столкновении с лодкой может потопить её без всяких для себя повреждений.Как это согласуется с равенством модулей сил взаимодействия?
    8.а.Какими способами насажисают топор на рукоятку?Как объяснить происхождящие при этом явления?
    б.Какая сила сообщает телу массой 400г. ускорение 2 м/с(в квадрате)?
    в.Двое мальчиков тянут шнур в противоположные стороны,каждый с силой 100Н.Разорвётся ли шнур,если он может выдержать нагрузку 150Н?


    Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

    Современная формулировка закона:

    История

    Древнегреческие учёные, судя по дошедшим до нас сочинениям, размышляли о причинах совершения и прекращения движения. В «Физике» Аристотеля (IV век до н. э.) приводится такое рассуждение о движении в пустоте :

    Однако сам Аристотель считал, что пустота в природе не может существовать, и в другом его труде, «Механике», утверждается :

    Наблюдения действительно показывали, что тело останавливалось при прекращении действия толкающей его силы. Естественное противодействие внешних сил (сил трения, сопротивления воздуха и т. п.) движению толкаемого тела при этом не учитывалось. Поэтому Аристотель связывал неизменность скорости движения любого тела с неизменностью прилагаемой к нему силы.

    Только через два тысячелетия Галилео Галилей (1564-1642) смог исправить эту ошибку Аристотеля. В своем труде «Беседы о двух новых науках» он писал :

    Это суждение нельзя вывести непосредственно из эксперимента, так как невозможно исключить все внешние влияния (трение и т. п.). Поэтому, здесь Галилей впервые применил метод логического мышления, базирующийся на непосредственных наблюдениях и подобный математическому методу доказательства «от противного». Если наклон плоскости к горизонтали является причиной ускорения тела, движущегося по ней вниз, и замедления тела, движущегося по ней вверх, то, при движении по горизонтальной плоскости, у тела нет причин ускоряться или замедляться, и оно должно пребывать в состоянии равномерного движения или покоя.

    Таким образом, Галилей просто и ясно доказал связь между силой и изменением скорости (ускорением), а не между силой и самой скоростью, как считал Аристотель и его последователи. Это открытие Галилея вошло в науку как Закон инерции . Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). В современном виде закон инерции сформулировал Декарт . Ньютон включил закон инерции в свою систему законов механики как первый закон .

    Смежные понятия

    Инертность - свойство тела в большей или меньшей степени препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии на него внешних сил. Мерой инертности в физике выступает инертная масса .

    См. также

    Литература

    • Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
    • Спасский Б. И. . История физики. М., «Высшая школа», 1977.
      • Том 1. Часть 1-я; Часть 2-я
      • Том 2. Часть 1-я; Часть 2-я
    • Кокарев С. С. Три лекции о законах Ньютона. Ярославль. Сб. трудов РНОЦ Логос, вып. 1, 45-72, 2006.

    Примечания


    Wikimedia Foundation . 2010 .

    Синонимы :

    Антонимы :

    Смотреть что такое "Инерция" в других словарях:

      - (лат. inertia, от iners безыскусственный). Общее физическое свойство тел: неспособность самопроизвольно изменять свое положение как при покое, так и при движении. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… … Словарь иностранных слов русского языка

      См. Масса. Философский энциклопедический словарь. 2010. ИНЕРЦИЯ (от лат. inertia – бездействие) – в механике … Философская энциклопедия

      Инерция - Инерция ♦ Inertie Как ни парадоксально звучит, но инерция это прежде всего сила – сила тела сохранять свое положение в движении или покое. Действительно, согласно принципу инерции материальный объект сам по себе сохраняет состояние покоя или … Философский словарь Спонвиля

      инерция - и, ж. inertie <лат. inertia. 1. Свойство тел сохранять состояние покоя или движения, пока какая н. сила не выведет их из этого состояния. БАС 1. < Лошадь> отдалась силе инерции, которая перенесла ее далеко за канаву. Толст. А. Каренина.… … Исторический словарь галлицизмов русского языка

      См. лень … Словарь синонимов

      - (от лат. inertia бездействие) (инертность), в механике свойство матер. тел, находящее отражение в 1 м и 2 м Ньютона законах механики. Когда внеш. воздействия на тело (силы) отсутствуют или взаимно уравновешиваются, И. проявляется в том, что тело… … Физическая энциклопедия

      То же, что инертность … Большой Энциклопедический словарь

    Если тело находится в состоянии покоя по отношению к Земле, то оно будет сохранять свое состояние бесконечно долго, до тех пор, пока другие тела, воздействуя на него, не выведут, рассматриваемое тело, из этого состояния.

    Известно, что если тело совершает движение, по отношению к Земле, то изменение его скорости, не может происходить само собой. Изменение величины и направления скорости тела относительно Земли происходит при воздействии на тело со стороны других тел. Возникает вопрос: для того, чтобы тело имело постоянную скорость относительно Земли, является необходимым воздействие на рассматриваемое тело со стороны других тел?

    Долгое время, начиная с четвертого века до нашей эры, господствовало мнение, которое сформулировал Аристотель. Он считал, что для того, чтобы тело двигалось (в том числе и с постоянной скоростью) необходимо действие на него со стороны других тел. Так, для того, чтобы автомобиль ехал, двигатель должен всегда работать. Перестал двигатель работать, автомобиль остановился. Следуя за Аристотелем надо было бы сказать, что причиной движения является действие на рассматриваемое тело со стороны других тел. Аристотель обладал очень большим авторитетом, его труды составляют работы по философии, естественным наукам, истории и психологии и др. Аристотель был учителем А. Македонского, который испытывал к своему учителю большой пиетет. Авторитет Аристотеля являлся столь высоким, что его объяснение причин движения господствовали в европейском естествознании более двух тысяч лет.

    Закон инерции?

    Стоит отметить, что китайские «физики» фрагментарно сформулировали закон инерции между 450 и 250 годами до нашей эры. В работе философа Мо-цзы было написано примерно следующее: Если противодействующей силы нет, то движения тела никогда не прекратится. Мысль о прямолинейности движения по инерции китайцы формулировали так: Если присутствует поддерживающий столб, то движение не прекратится. Оно будет уподоблено переходу по висячему мосту. В переводе на современный язык это означает: В том случае, если на движущееся тело воздействовать с силой направленной под углом к направлению перемещения, то тело будет двигаться по криволинейной траектории.

    В Европе понятие инерции было сформулировано Г. Галилеем в середине семнадцатого века, после того, как он провел серию широко известных экспериментов с шарами. Г. Галилей одним из первых пришел к объяснению причин равномерного и ускоренного перемещения тел и исследовал движение по инерции. Однако представления Галилея были не верны до конца, так как он утверждал, что тело, на которое не действуют силы движется равномерно по окружности. Такие представления у ученого были сформированы после изучения движения небесных тел. Так как он считал, что небесные тела движутся сами по себе.

    Было бы правильно, говорить, что первым сформулировал закон инерции французский философ, математик Р. Декарт. Он писал о том, что любое тело пребывает одном состоянии до того момента пока не встретится с другим телом. И в другом своем законе Декарт говорит, что любая частица стремится двигаться исключительно по прямой. Однако Декарт дал формулировки своих законов, не зная о силах гравитации и скорее по наитию, чем опираясь на факты, поэтому считают, что закон инерции, который мы знаем, сформулировал И. Ньютон:

    Каждое тело находится в состоянии покоя или движется равномерно и прямолинейно, относительно любой инерциальной системы отсчета, до того момента пока действие на него других тел не заставит его изменить свое состояние.

    Примеры решения задач

    ПРИМЕР 1

    Задание В чем состоит смысл опытов Галилея с наклонной плоскостью и почему они подтверждают закон инерции?
    Решение Сделаем рисунок.

    Галилей сделал несколько наклонных плоскостей с вырезанными в них прямыми желобами. Длина плоскости составляла примерно 5 метров. Желоб естествоиспытатель выстилал пергаментом для того, чтобы уменьшить силу трения. По желобу скатывался тяжелый шар. Галилей замечал положения шара через одинаковые промежутки времени. Так как секундомера в это время не было, то ученый использовал свой пульс или иные не слишком удобные методы измерения времени. Было получено, что путь пройденный телом, движущимся с постоянным ускорением пропорционален квадрату времени.

    Данный эксперимент, наряду с другими опытами по падению тел, дали основу для принципа инерции. Получалось, что шар, скатывавшийся по наклонной плоскости виз, увеличивал скорость, при движении вверх скорость тела уменьшалась. Если плоскость, по которой двигалось тело, была горизонтальна, то тело свою скорость почти не изменяло, так как у него не было причины ускоряться или замедляться. По предположению Галилея, если нет причины изменения движения, то тело движется равномерно или находится в состоянии покоя.